Facebook Immune System

人人安全中心 姚海阔

Immune

- A realtime system to protect our users and the social graph
- Big data, Real time
 - 25B checks per day
 - 650K per second at peak
 - Realtime checks and classifications on every read and write actions

Agenda

- 1 Threats
- 2 Adversarial Learning
- 3 System Design
- 4 Summary

Protect the Graph

- Threats to the social graph can be tracked to three root causes.
 - Compromised accounts
 - return
 - Fake accounts
 - delete
 - Creepers
 - educate

Compromised Accounts

- Phishing
 - The trust is a target for manipulation
 - IP and successive geo-distance
- Malware
 - Target the propagation vector
 - using <u>user feedback</u>
 - require Turing tests*

Fake Accounts

- Created by both scripts and raw labor
 - overcome rate limits
 - boost the reputation or ranking
 - Short lifetime
- Fake accounts have limited virality because they are not central nodes and lack trusted connections
 - Comments and wall posts on pages

Creepers

- Unwanted friend requests
 - Beauty hunter
- Chain letters
 - motivate users to take damaging actions on false pretenses
 - create a global misinformation wall that hides critical or time-sensitive information

Balance of Power

- What the attackers have:
 - Labor. They have much more
 - Distributed botnets, compromised webhosts, infected zombies
 - Fake and compromised objects (events, apps, pages, groups, users, ...)
- What we have:
 - Data centers, content distribution networks
 - User feedback -- spam reports, feed hides, friend rejects
 - Knowledge of patterns and anomalies
 - Shared secrets with users

Adversarial

- Adversarial learning
 - The attacker works to hide patterns and subvert detection
 - The system must respond fast and target the <u>features that are most expensive</u> for the attacker to change
 - not to <u>overfit</u> on the superficial features that are easy for the attacker to change*

Circle

 The defender seeks to shorten Attack and Detect while lengthening Defense and Mutate

Method

- The Attack phase
 - better user feedback
 - more effective unsupervised learning and anomaly detection.
- The Detect phase
 - quickly building and deploying new features and models.
- The defense and mutate phases
 - making it harder for the attacker to detect and adapt
 - obscuring responses and subverting attack canaries*

Phishing Case

Graph and User Protection

Main components

- Classifier services
 - SVM, Random Forest, Logistic Regression, Boosting
- Feature Extraction Language (FXL)
 - Dynamically executed language for expressing features and rules

Sigma: High-level design

Feature Loops (an FXL feature provider)

- Inner Floop (counters), 10ms latency, Memcache
 - The number of login failures per IP
 - Number of users that cleared User Experience per IP
 - Rate that app has published to Feed
- Middle Floop (tailers), 10s latency, Scribe HDFS
 - The number of times a domain has been sent in a message
 - Trigger recomputation of friend network coherence
- Outer Floop (Hive), 1d latency
 - Unique users disabled from an IP over past 15d
 - Number of users with given name per country and gender

- Lack of a clean data layer. Opaque data definition
- Feature reliability
- Many channels, and they evolve
- Actionable detection
- Scaling to deeper classification at display-time

Summary

谢 谢